Межзвездный газ
Состав и структура межзвёздного газа
М. г. — осн. компонент межзвёздной среды, составляющий ок. 99% её массы и ок. 2% массы Галактики. М. г. весьма равномерно перемешан с межзвёздной пылью,к-рая часто своим поглощением или рассеянием света делает газово-пылевые структуры наблюдаемыми (см. Туманности). Диапазон изменения осн. параметров, описывающих М. г., очень широк. Темп-ра М. г. колеблется от 4-6 К до 106 К (в межзвёздных ударных волнах ионная темп-ра М. г. иногда превышает 109 К), концентрация изменяется от 10-3-10-4 до 108-1012 частиц в 1 см3. Для излучения М. г. характерен широкий диапазон — от длинных радиоволн до жёсткого гамма-излучения.
Существуют области, где М. г. находится преимущественно в молекулярном состоянии (молекулярные облака) — это наиболее плотные и холодные части М. г.; есть области, где М. г. состоит гл. обр. из нейтральных атомов водорода (области HI),- это менее плотные и в среднем более тёплые области; существуют области ионизованного водорода (зоны НII), к-рыми явл. светлые эмиссионные туманности вокруг горячих звёзд, и области разреженного горячего газа (корональный газ).
М. г., как и вещество звёзд, состоит гл. обр. из водорода и гелия с небольшой добавкой других хим. элементов (см. Распространенность элементов). В среднем в М. г. атомы водорода составляют ок. 90% числа всех атомов (70% по массе). На атомы гелия приходится ок. 10% числа атомов (ок. 28% по массе). Остальные 2% массы составляют все последующие хим. элементы (т.н. тяжёлые элементы). Из них наиболее обильны О, С, N, Ne, S, Ar, Fe. Все они вместе составляют прибл. 1/1000 от числа атомов М. г. Однако роль их в npoцeccax, протекающих в М. г., очень велика. По сравнению с составом Солнца в М. г. наблюдается дефицит ряда тяжёлых элементов, особенно Аl, Са, Ti, Fe, Ni, обилие к-рых в десятки и сотни раз меньше, чем на Солнце. В разных участках М. г. Галактики величина дефицита неодинакова. Возникновение дефицита связано с тем, что значит. часть указанных элементов входит в состав пылинок и почти отсутствует в газообразной фазе.
М. г. присутствует в галактиках всех типов, но в разном количестве и имеет характерное для каждого типа галактик пространственное распределение и движение. В эллиптич. галактиках (Е-галактиках) газа обычно очень мало, $\le$0,1% от массы галактики ${\mathfrak M}_G$, в спиральных (S-галактиках) $\approx$1-10% ${\mathfrak M}_G$, а в большинстве неправильных (Ir-галактиках) — более 10% ${\mathfrak M}_G$. Здесь приведены массы атомарного водорода. Если учитывать молекулярный водород, то цифры должны быть увеличены примерно вдвое. В Галактике полная масса М. г. $\approx 4\cdot 10^9 {\mathfrak M}_\odot\approx 2\% {\mathfrak M}_G$, из которых на атомарный газ приходится $2\cdot 10^9 {\mathfrak M}_\odot$.
В Е-галактиках М. г. встречается в заметном количестве лишь в гигантских галактиках этого типа, преимущественно в их центрах. В галактиках др. типов также имеется газ в центрах, но осн. масса М. г. сосредоточена в галактич. дисках. В среднем толщина диска М. г. в Ir-галактиках больше, чем в S-галак-тиках. В крупных S-галактиках М. г. обычно прослеживается, по крайней мере, до расстояний 20-30 кпк от их центра, где в оптич. диапазоне галактика практически не видна (рис. 1). В S- и Ir-галактиках М. г. вращается вокруг галактического центра вместе со звёздами диска. В Е-галактиках М. г. движется преимущественно радиально.
Межзвёздный газ в Галактике
Наиболее детально структура М. г. исследована в нашей Галактике. Распределение М. г. в диске Галактики, как и в др. спиральных галактиках, характеризуется наличием максимума концентрации газа на расстоянии неск. кпк от галактич. центра. В Галактике максимум расположен на расстоянии $\approx$5 кпк от центра, в др. S-галактиках — на расстоянии $\approx$5-8 кпк. В области максимума характерная толщина газового слоя Галактики $\approx$200-300 пк. Она уменьшается с приближением к центру и резко увеличивается на периферии, достигая неск. кпк на расстоянии 15-20 кпк от центра. Внеш. части газового диска Галактики изогнуты.
В диске осн. часть М. г. сосредоточена в спиральных ветвях (рис. 2). В пространстве между ними плотность М. г. много меньше средней. В ветвях газ распределён также крайне неравномерно. Значит. часть его собрана в обширные газово-пылевые комплексы — клочковатые образования размером во многие десятки и сотни пк, состоящие в основном из молекулярного водорода. С газово-пылевыми комплексами связаны области звездообразования, а следовательно, и молодые массивные яркие звёзды. В спиральных ветвях (рукавах) находятся также межзвёздные облака атомарного водорода и молекулярные облака (области HI). Около половины массы М. г. содержится в гигантских молекулярных облаках со ср. массой $\sim 10^5 {\mathfrak M}_\odot$ и диаметром ок. 40 пк. Большинство из них расположено в кольце между 4 и 8 кпк от центра Галактики в галактич. диске. Количество их достигает 4000. Наряду с этими структурами около половины объёма рукавов составляют широкие коридоры очень разреженного горячего сильно ионизованного газа с темп-рой ок. 106 K и концентрацией частиц ~10-2-10-3 см-3. Один из таких коридоров расположен вблизи Солнечной системы. Разреженный горячий М. г. находится также в остатках вспышек сверхновых звёзд и в т.н. межзвёздных «пузырях» (см. Оболочки-гиганты).
Вне галактич. диска М. г. очень мало. В осн. части гало Галактики газ, по-видимому, горячий (~ 10oК) и очень разреженный ($\approx 3\cdot 10^{-4} см^{-3}$ на высоте 5 кпк над плоскостью симметрии диска). Наиболее заметны самые плотные газовые образования гало — планетарные туманности. По-видимому, небольшое количество газа имеется в нек-рых, наиболее плотных, шаровых звёздных скоплениях. Кроме того, на высоких галактич. широтах обнаружены высокоширотные и высокоскоростные облака водорода.
Методы наблюдении межзвёздного газа
Сильная разреженность М. г. и широкий диапазон темп-р, при к-рых он может находиться, определяют разнообразие методов его исследования.
Наиболее доступны для наблюдений газовые и газово-пылевые светлые туманности. По оптич. и в меньшей степени ИК-спектрам излучения эмиссионных туманностей удалось установить плотность, темп-ру, состав и состояние ионизации вещества зон НII. Богатую информацию о М. г. в эмиссионных туманностях получают по рекомбинационным радиолиниям водорода, гелия и др. элементов, а также по непрерывному радиоизлучению.
Состояние М. г. вне туманностей исследуют по межзвёздным оптич. и УФ-линиям поглощения в спектрах звёзд. По ним удалось установить, что М. г. состоит из отдельных облаков, а вещество в них находится преимущественно в нейтральном атомарном состоянии. По линиям поглощения в оптич. диапазоне были открыты (1938 г.) первые молекулы в межзвездной среде. Линии поглощения большинства атомов, ионов и молекул лежат в УФ-области спектра (рис. 3). Наблюдения их, проводимые на ИСЗ, позволили изучить распространённость элементов и ионизац. состояние М. г. и обнаружить в нём дефицит ряда тяжёлых элементов. По линиям поглощения ионов NV (1238 \AA и 1242 \AA) и OVI (1032 \AA и 1038 \AA) были обнаружены коридоры горячего газа. По радиолинии водорода 21 см изучают крупномасштабную и тонкую структуру областей HI в Галактике и др. галактиках, плотность и темп-ру межзвёздных облаков, их строение, движение, а также вращение вокруг центров галактик.
Исследовать распределение Н2 труднее. Для этого чаще всего пользуются косвенным методом: исследуют пространственное распределение молекулы СО, концентрация к-рой пропорциональна концентрации молекул H2 (молекул Н2 примерно в 105 раз больше, чем СО). Радиоизлучение молекулы СО с $\lambda$= 2,6 мм практически не поглощается межзвёздной пылью и позволяет изучать распределение молекул СО и Н2, а также исследовать условия в наиболее холодной и плотной части М. г.- в молекулярных облаках и газово-пылевых комплексах. Молекулы H2 непосредственно наблюдаются только по полосам поглощения, лежащим в далёкой УФ-области спектра ($\le$ 1108 \AA), и в неск. случаях по ИК-линиям излучения ($\lambda$= 2 мкм и 4 мкм). Однако из-за межзвёздного поглощения света пылью этот метод не позволяет исследовать Н2 в плотных непрозрачных молекулярных облаках, где эти молекулы в основном сосредоточены. Отдельные, наиболее плотные конденсации молекулярного газа, расположенные рядом с сильными источниками возбуждения (напр., ИК-звёздами), наблюдаются в виде мощных космических мазеров (см. Мазерный эффект).
Высокое спектр. разрешение, достигнутое в радиодиапазоне, позволяет изучать молекулы, содержащие различные изотопы атомов, напр. 1H и 2D (дейтерий), 12С и 13С, 14N и 15N, 16О, 17О, 18О и т.д., т.е. изотопный состав М. г. и его вариации. Сравнение изотопного состава совр. М. г. с изотопным составом Солнечной системы, образовавшейся из межзвёздной среды ок. $4,6\cdot 10^9$ лет назад, даёт возможность судить об изменениях изотопного состава, связанных с эволюцией М. г.
По поглощению рентг. лучей в межзвёздном пространстве можно судить о полном количестве межзвёздного вещества, находящегося в атомарном и молекулярном виде, а также в виде пылинок. В дальнейшем по флюоресценции атомов в рентгеновских $K_\alpha$-линиях различных элементов (см. Уровни энергии) можно будет получить достаточно полную информацию о распространённости элементов в межзвёздном веществе независимо от того, в каком состоянии оно находится. Наиболее горячие участки М. г. (остатки сверхновых звёзд и коридоры горячего газа) излучают в рентг. диапазоне, что позволяет методами рентгеновской астрономии изучить их пространственное расположение и физ. св-ва.
Межзвездная среда излучает также в $\gamma$-лучах. Энергичные $\gamma$-фотоны (с энергией $\ge$50 МэВ) возникают в М. г. за счёт того, что при столкновении протонов космических лучей с протонами М. г. образуются $\pi^0$-мезоны, которые распадаются на 2 $\gamma$-фотона. Вклад $\approx$50% даёт тормозное излучение релятивистских электронов космич. лучей при соударениях с ядрами атомов М. г. Кроме того, при взаимодействии частиц космич. лучей низких энергий с ядрами атомов М. г. и пыли появляются $\gamma$-линии в диапазоне 1-6 МэВ. Сильная линия, с энергией фотонов 0,511 МэВ, может образовываться при аннигиляции позитронов, возникающих при взаимодействии космич. лучей с М. г.
Степень ионизации М. г. удаётся изучать по мере дисперсии радиоизлучения пульсаров и в меньшей степени но вращению плоскости поляризации радиоисточников (см. Фарадея эффект),
Состояние газа в непосредств. окрестности Солнечной системы установлено по параметрам межзвёздного ветра, обусловленного движением Солнца относительно межзвёздной среды.
Ещё одним тонким методом исследований М. г. оказались наблюдения мерцаний радиоизлучения пульсаров на мелких неоднородностях межзвездной плазмы (см. Мерцаний метод). С его помощью удалось установить, что концентрация электронов ту в М. г. флуктуирует слабо. Среднее по лучу зрения значение $\Delta n_e/n_e\approx(1-3)\cdot 10^{-5}$ (здесь $\Delta n_e$ — отклонение концентрации электронов от ср. значения по лучу зрения). Размеры неоднородностей могут быть различными, но при наблюдениях пульсаров осн. вклад в мерцания дают неоднородности размером ~ 1010-1013 см, порождённые, по-видимому, плазменной турбулентностью.
Процессы, формирующие состояние межзвёздного газа
Тепловое и ионизационное состояния М. г.
Разреженность М. г. приводит к тому, что он прозрачен для большинства видов излучения. Поэтому условия в нём очень далеки от термодинамического равновесия. Однако распределение энергии между частицами М. г. в большинстве случаев (за исключением гл. обр. ударных волн в М. г., где нет равнораспределения энергии между электронами и ионами) подчиняется Максвелла распределению, благодаря чему можно говорить о темп-ре М. г.
Для определения равновесных св-в М. г. (степени ионизации, интенсивности излучения и др.) рассматривается баланс процессов возбуждения ионов, атомов и молекул (соударений, поглощения излучения и др.) и процессов снятия возбуждения (рекомбинаций, испускания фотонов), протекающих в к.-л. выделенном объёме в конечный интервал времени.
Зоны НII М. г. нагреваются УФ-излучением звёзд, расположенных внутри них (атомы водорода активно поглощают излучение с $\lambda <$ 912 \AA). Области HI и молекулярные облака нагреваются проникающей радиацией: частицами космич. лучей низких энергий (~ 1-10 МэВ/нуклон), а также УФ- и мягким рентг. излучением. Роль более энергичных фотонов и частиц невелика, т.к. их меньше, а взаимодействуют они с М. г. слабее (см. Ионизация). В нек-рых местах М. г. существенны и др. механизмы нагрева, напр. ударные волны, возникающие при столкновениях облаков или при вспышках сверхновых звёзд.
Охлаждение М. г. происходит за счёт излучения в спектральных линиях чаще в ИК- и оптич. областях спектра, реже в УФ- и рентг. диапазонах или в радиодиапазоне (см. Линейчатое излучение). Излучение в непрерывном спектре играет, как правило, второстепенную роль. В целом механизм охлаждения почти всех областей М. г. подобен охлаждению зон НII, но в областях HI повышенную роль в охлаждении играет излучение в ИК-диапазоне, а в холодных молекулярных областях — в радиодиапазоне.
Ионизуется М. г. теми же видами излучений, что и нагревается. Ионизац. равновесие достигается при равенстве скорости ионизации и скорости гл. обр. радиац. рекомбинации. В отдельных случаях, напр. для иона ОН в областях HI, определённую роль играют реакции обмена зарядом (реакции перезарядки) с водородом и реже с гелием.
Формирование структуры М. г.
Анализ, проведённый С.Б. Пикельнером (1967 г.), показал, что ур-ние состояния газа в областях HI подобно ур-нию состояния Ван-дер-Ваальса для неидеального газа, т.е. давление p имеет минимум и максимум (рис. 4). В областях HI спиральных ветвей Галактики определённому давлению М. г. могут соответствовать три значения концентрации частиц (или плотности) газа n. Состояние при среднем значении концентрации неустойчиво, из этого состояния М. г. за ~ 106 лет перейдёт в состояние с большей (n1) или меньшей (n2) концентрацией. В результате М. г. разбивается на области с $n_1\approx$10 см-3 и $n_2\approx 0,1$ см-3, между к-рыми устанавливается равенство давлений: сгущения с $n_1\approx$10 см-3 и $T_1\approx 100$K (облака) находятся в динамич. равновесии с областями, где $n_2\approx 0,1$ см-3 при темп-ре $T_2\approx 10000$ К (см. кривую T на рис. 4). Процесс расслоения М. г. на две термически устойчивые фазы (как следствие тепловой неустойчивости М. г.) приводит к тому, что в областях НI существуют «холодные» облака и более «горячая» межоблачная среда.
Другим, ещё более сильным фактором, влияющим на структуру М. г. в S-галактиках, явл. спиральные ударные волны. Они возникают при соударении М. г., уже накопленного в спиральных ветвях, с газом, к-рый при круговом движении вокруг центра галактики догоняет спиральные ветви и входит в них со сверхзвуковой скоростью (спиральные ветви вращаются вокруг центра Галактики в ту же сторону, что газ и звезды, но с меньшей скоростью). На фронте ударной волны набегающий газ тормозится и уплотняется. За счет повысившегося давления почти весь газ оказывается в плотной фазе. Так образуются газово-пылевые комплексы, наблюдаемые на внутр. сторонах спиральных ветвей.
Газово-пылевые комплексы могут возникать не только под действием спиральных ударных волн, но и вследствие т.н. Рэлея-Тейлора неустойчивости газового диска галактик. В результате развития неустойчивости возникают компактные ($\approx$10-30 пк) газово-пылевые сгустки, становящиеся затем очагами образования звёздных скоплений. В S-галактиках неустойчивость Рэлея-Тейлора играет, вероятно, меньшую роль, чем спиральные ударные волны, но в Ir-галактиках она, видимо, явл. осн. причиной образования комплексов М. г.
Наблюдения показывают, что межзвёздные облака имеют помимо упорядоченного движения вокруг центра Галактики хаотич. скорости со ср. значением ок. 10 км/с. В среднем через 30-100 млн. лет облако сталкивается с др. облаком, что приводит к диссипации (уменьшению) этих случайных движений, частичному слипанию облаков и формированию степенного (~ ${\mathfrak M}^{-3/2}$) спектра их масс. Хаотич. движения поддерживаются взрывами сверхновых: сброшенная при взрыве М. г. оболочка звезды тормозится в М. г. и передает облакам часть своего импульса.
Из области М. г., по к-рой прошла ударная волна, вызванная вспышкой, почти весь газ оказывается выметенным. Возникшая область разреженного газа (каверна размером в десятки пк с n~ 10-2 см-3 и T ~ 106 K) может существовать ~107 лет. Если за это время поблизости вспыхнет ещё одна сверхцо-вая, то новая каверна, сомкнувшись с предыдущей, может образовать обширныи коридор горячего разреженного сильно ионизованного газа. Излучение горячего газа может нагревать до 300-5000 К газовые облака, находящиеся на расстоянии многих пк от коридоров (существование облаков с такой темп-рой невозможно в описанной выше простой двухфазной модели М. г.).
Вспышки сверхновых звёзд, «пробурившие» газовый диск галактики насквозь, вызывают отток газа от плоскости галактики в межгалактич. среду и нагрев его там вплоть до 107-108 K. В результате в межгалактич. среду попадает обогащённый тяжёлыми элементами газ. Возможно, что именно благодаря этим процессам межгалактич. газ в скоплениях галактик имеет почти такое же содержание железа, как атмосфера Солнца. Часть газа, видимо, падает назад к галактич. плоскости в виде высокоширотных и высокоскоростных облаков водорода.
Интересные факты
Галактический газовый диск изогнут на периферии.
Основной объем межзвездного газа сосредоточен в спиральных рукавах, один из коридоров которых расположен рядом с Солнечной системой.
В разреженном МГ, подвергаемом действию космических излучений, обнаружена зависимость показателей температуры, давления и объема электронов от плотности концентрации водорода.
К самым мощным факторам, влияющим на структурные процессы в межзвездной газовой среде, относятся спиральные ударные волны.
Энергия вспышки сверхновой способна пробить пространство галактического диска, вызвав тем самым отток МГ в свободное пространство Вселенной.
В теории молекулярные газовые облака за период в чуть более 100 лет должны превращаться в звезды. Но на практике существует множество факторов, замедляющих этот процесс.
Источники
Состав и структура межзвёздного газа
М. г. — осн. компонент межзвёздной среды, составляющий ок. 99% её массы и ок. 2% массы Галактики. М. г. весьма равномерно перемешан с межзвёздной пылью,к-рая часто своим поглощением или рассеянием света делает газово-пылевые структуры наблюдаемыми (см. Туманности). Диапазон изменения осн. параметров, описывающих М. г., очень широк. Темп-ра М. г. колеблется от 4-6 К до 106 К (в межзвёздных ударных волнах ионная темп-ра М. г. иногда превышает 109 К), концентрация изменяется от 10-3-10-4 до 108-1012 частиц в 1 см3. Для излучения М. г. характерен широкий диапазон — от длинных радиоволн до жёсткого гамма-излучения.
Существуют области, где М. г. находится преимущественно в молекулярном состоянии (молекулярные облака) — это наиболее плотные и холодные части М. г.; есть области, где М. г. состоит гл. обр. из нейтральных атомов водорода (области HI),- это менее плотные и в среднем более тёплые области; существуют области ионизованного водорода (зоны НII), к-рыми явл. светлые эмиссионные туманности вокруг горячих звёзд, и области разреженного горячего газа (корональный газ).
М. г., как и вещество звёзд, состоит гл. обр. из водорода и гелия с небольшой добавкой других хим. элементов (см. Распространенность элементов). В среднем в М. г. атомы водорода составляют ок. 90% числа всех атомов (70% по массе). На атомы гелия приходится ок. 10% числа атомов (ок. 28% по массе). Остальные 2% массы составляют все последующие хим. элементы (т.н. тяжёлые элементы). Из них наиболее обильны О, С, N, Ne, S, Ar, Fe. Все они вместе составляют прибл. 1/1000 от числа атомов М. г. Однако роль их в npoцeccax, протекающих в М. г., очень велика. По сравнению с составом Солнца в М. г. наблюдается дефицит ряда тяжёлых элементов, особенно Аl, Са, Ti, Fe, Ni, обилие к-рых в десятки и сотни раз меньше, чем на Солнце. В разных участках М. г. Галактики величина дефицита неодинакова. Возникновение дефицита связано с тем, что значит. часть указанных элементов входит в состав пылинок и почти отсутствует в газообразной фазе.
М. г. присутствует в галактиках всех типов, но в разном количестве и имеет характерное для каждого типа галактик пространственное распределение и движение. В эллиптич. галактиках (Е-галактиках) газа обычно очень мало, $\le$0,1% от массы галактики ${\mathfrak M}_G$, в спиральных (S-галактиках) $\approx$1-10% ${\mathfrak M}_G$, а в большинстве неправильных (Ir-галактиках) — более 10% ${\mathfrak M}_G$. Здесь приведены массы атомарного водорода. Если учитывать молекулярный водород, то цифры должны быть увеличены примерно вдвое. В Галактике полная масса М. г. $\approx 4\cdot 10^9 {\mathfrak M}_\odot\approx 2\% {\mathfrak M}_G$, из которых на атомарный газ приходится $2\cdot 10^9 {\mathfrak M}_\odot$.
В Е-галактиках М. г. встречается в заметном количестве лишь в гигантских галактиках этого типа, преимущественно в их центрах. В галактиках др. типов также имеется газ в центрах, но осн. масса М. г. сосредоточена в галактич. дисках. В среднем толщина диска М. г. в Ir-галактиках больше, чем в S-галак-тиках. В крупных S-галактиках М. г. обычно прослеживается, по крайней мере, до расстояний 20-30 кпк от их центра, где в оптич. диапазоне галактика практически не видна (рис. 1). В S- и Ir-галактиках М. г. вращается вокруг галактического центра вместе со звёздами диска. В Е-галактиках М. г. движется преимущественно радиально.
Межзвёздный газ в Галактике
Наиболее детально структура М. г. исследована в нашей Галактике. Распределение М. г. в диске Галактики, как и в др. спиральных галактиках, характеризуется наличием максимума концентрации газа на расстоянии неск. кпк от галактич. центра. В Галактике максимум расположен на расстоянии $\approx$5 кпк от центра, в др. S-галактиках — на расстоянии $\approx$5-8 кпк. В области максимума характерная толщина газового слоя Галактики $\approx$200-300 пк. Она уменьшается с приближением к центру и резко увеличивается на периферии, достигая неск. кпк на расстоянии 15-20 кпк от центра. Внеш. части газового диска Галактики изогнуты.
В диске осн. часть М. г. сосредоточена в спиральных ветвях (рис. 2). В пространстве между ними плотность М. г. много меньше средней. В ветвях газ распределён также крайне неравномерно. Значит. часть его собрана в обширные газово-пылевые комплексы — клочковатые образования размером во многие десятки и сотни пк, состоящие в основном из молекулярного водорода. С газово-пылевыми комплексами связаны области звездообразования, а следовательно, и молодые массивные яркие звёзды. В спиральных ветвях (рукавах) находятся также межзвёздные облака атомарного водорода и молекулярные облака (области HI). Около половины массы М. г. содержится в гигантских молекулярных облаках со ср. массой $\sim 10^5 {\mathfrak M}_\odot$ и диаметром ок. 40 пк. Большинство из них расположено в кольце между 4 и 8 кпк от центра Галактики в галактич. диске. Количество их достигает 4000. Наряду с этими структурами около половины объёма рукавов составляют широкие коридоры очень разреженного горячего сильно ионизованного газа с темп-рой ок. 106 K и концентрацией частиц ~10-2-10-3 см-3. Один из таких коридоров расположен вблизи Солнечной системы. Разреженный горячий М. г. находится также в остатках вспышек сверхновых звёзд и в т.н. межзвёздных «пузырях» (см. Оболочки-гиганты).
Вне галактич. диска М. г. очень мало. В осн. части гало Галактики газ, по-видимому, горячий (~ 10oК) и очень разреженный ($\approx 3\cdot 10^{-4} см^{-3}$ на высоте 5 кпк над плоскостью симметрии диска). Наиболее заметны самые плотные газовые образования гало — планетарные туманности. По-видимому, небольшое количество газа имеется в нек-рых, наиболее плотных, шаровых звёздных скоплениях. Кроме того, на высоких галактич. широтах обнаружены высокоширотные и высокоскоростные облака водорода.
Методы наблюдении межзвёздного газа
Сильная разреженность М. г. и широкий диапазон темп-р, при к-рых он может находиться, определяют разнообразие методов его исследования.
Наиболее доступны для наблюдений газовые и газово-пылевые светлые туманности. По оптич. и в меньшей степени ИК-спектрам излучения эмиссионных туманностей удалось установить плотность, темп-ру, состав и состояние ионизации вещества зон НII. Богатую информацию о М. г. в эмиссионных туманностях получают по рекомбинационным радиолиниям водорода, гелия и др. элементов, а также по непрерывному радиоизлучению.
Состояние М. г. вне туманностей исследуют по межзвёздным оптич. и УФ-линиям поглощения в спектрах звёзд. По ним удалось установить, что М. г. состоит из отдельных облаков, а вещество в них находится преимущественно в нейтральном атомарном состоянии. По линиям поглощения в оптич. диапазоне были открыты (1938 г.) первые молекулы в межзвездной среде. Линии поглощения большинства атомов, ионов и молекул лежат в УФ-области спектра (рис. 3). Наблюдения их, проводимые на ИСЗ, позволили изучить распространённость элементов и ионизац. состояние М. г. и обнаружить в нём дефицит ряда тяжёлых элементов. По линиям поглощения ионов NV (1238 \AA и 1242 \AA) и OVI (1032 \AA и 1038 \AA) были обнаружены коридоры горячего газа. По радиолинии водорода 21 см изучают крупномасштабную и тонкую структуру областей HI в Галактике и др. галактиках, плотность и темп-ру межзвёздных облаков, их строение, движение, а также вращение вокруг центров галактик.
Исследовать распределение Н2 труднее. Для этого чаще всего пользуются косвенным методом: исследуют пространственное распределение молекулы СО, концентрация к-рой пропорциональна концентрации молекул H2 (молекул Н2 примерно в 105 раз больше, чем СО). Радиоизлучение молекулы СО с $\lambda$= 2,6 мм практически не поглощается межзвёздной пылью и позволяет изучать распределение молекул СО и Н2, а также исследовать условия в наиболее холодной и плотной части М. г.- в молекулярных облаках и газово-пылевых комплексах. Молекулы H2 непосредственно наблюдаются только по полосам поглощения, лежащим в далёкой УФ-области спектра ($\le$ 1108 \AA), и в неск. случаях по ИК-линиям излучения ($\lambda$= 2 мкм и 4 мкм). Однако из-за межзвёздного поглощения света пылью этот метод не позволяет исследовать Н2 в плотных непрозрачных молекулярных облаках, где эти молекулы в основном сосредоточены. Отдельные, наиболее плотные конденсации молекулярного газа, расположенные рядом с сильными источниками возбуждения (напр., ИК-звёздами), наблюдаются в виде мощных космических мазеров (см. Мазерный эффект).
Высокое спектр. разрешение, достигнутое в радиодиапазоне, позволяет изучать молекулы, содержащие различные изотопы атомов, напр. 1H и 2D (дейтерий), 12С и 13С, 14N и 15N, 16О, 17О, 18О и т.д., т.е. изотопный состав М. г. и его вариации. Сравнение изотопного состава совр. М. г. с изотопным составом Солнечной системы, образовавшейся из межзвёздной среды ок. $4,6\cdot 10^9$ лет назад, даёт возможность судить об изменениях изотопного состава, связанных с эволюцией М. г.
По поглощению рентг. лучей в межзвёздном пространстве можно судить о полном количестве межзвёздного вещества, находящегося в атомарном и молекулярном виде, а также в виде пылинок. В дальнейшем по флюоресценции атомов в рентгеновских $K_\alpha$-линиях различных элементов (см. Уровни энергии) можно будет получить достаточно полную информацию о распространённости элементов в межзвёздном веществе независимо от того, в каком состоянии оно находится. Наиболее горячие участки М. г. (остатки сверхновых звёзд и коридоры горячего газа) излучают в рентг. диапазоне, что позволяет методами рентгеновской астрономии изучить их пространственное расположение и физ. св-ва.
Межзвездная среда излучает также в $\gamma$-лучах. Энергичные $\gamma$-фотоны (с энергией $\ge$50 МэВ) возникают в М. г. за счёт того, что при столкновении протонов космических лучей с протонами М. г. образуются $\pi^0$-мезоны, которые распадаются на 2 $\gamma$-фотона. Вклад $\approx$50% даёт тормозное излучение релятивистских электронов космич. лучей при соударениях с ядрами атомов М. г. Кроме того, при взаимодействии частиц космич. лучей низких энергий с ядрами атомов М. г. и пыли появляются $\gamma$-линии в диапазоне 1-6 МэВ. Сильная линия, с энергией фотонов 0,511 МэВ, может образовываться при аннигиляции позитронов, возникающих при взаимодействии космич. лучей с М. г.
Степень ионизации М. г. удаётся изучать по мере дисперсии радиоизлучения пульсаров и в меньшей степени но вращению плоскости поляризации радиоисточников (см. Фарадея эффект),
Состояние газа в непосредств. окрестности Солнечной системы установлено по параметрам межзвёздного ветра, обусловленного движением Солнца относительно межзвёздной среды.
Ещё одним тонким методом исследований М. г. оказались наблюдения мерцаний радиоизлучения пульсаров на мелких неоднородностях межзвездной плазмы (см. Мерцаний метод). С его помощью удалось установить, что концентрация электронов ту в М. г. флуктуирует слабо. Среднее по лучу зрения значение $\Delta n_e/n_e\approx(1-3)\cdot 10^{-5}$ (здесь $\Delta n_e$ — отклонение концентрации электронов от ср. значения по лучу зрения). Размеры неоднородностей могут быть различными, но при наблюдениях пульсаров осн. вклад в мерцания дают неоднородности размером ~ 1010-1013 см, порождённые, по-видимому, плазменной турбулентностью.
Процессы, формирующие состояние межзвёздного газа
Тепловое и ионизационное состояния М. г.
Разреженность М. г. приводит к тому, что он прозрачен для большинства видов излучения. Поэтому условия в нём очень далеки от термодинамического равновесия. Однако распределение энергии между частицами М. г. в большинстве случаев (за исключением гл. обр. ударных волн в М. г., где нет равнораспределения энергии между электронами и ионами) подчиняется Максвелла распределению, благодаря чему можно говорить о темп-ре М. г.
Для определения равновесных св-в М. г. (степени ионизации, интенсивности излучения и др.) рассматривается баланс процессов возбуждения ионов, атомов и молекул (соударений, поглощения излучения и др.) и процессов снятия возбуждения (рекомбинаций, испускания фотонов), протекающих в к.-л. выделенном объёме в конечный интервал времени.
Зоны НII М. г. нагреваются УФ-излучением звёзд, расположенных внутри них (атомы водорода активно поглощают излучение с $\lambda <$ 912 \AA). Области HI и молекулярные облака нагреваются проникающей радиацией: частицами космич. лучей низких энергий (~ 1-10 МэВ/нуклон), а также УФ- и мягким рентг. излучением. Роль более энергичных фотонов и частиц невелика, т.к. их меньше, а взаимодействуют они с М. г. слабее (см. Ионизация). В нек-рых местах М. г. существенны и др. механизмы нагрева, напр. ударные волны, возникающие при столкновениях облаков или при вспышках сверхновых звёзд.
Охлаждение М. г. происходит за счёт излучения в спектральных линиях чаще в ИК- и оптич. областях спектра, реже в УФ- и рентг. диапазонах или в радиодиапазоне (см. Линейчатое излучение). Излучение в непрерывном спектре играет, как правило, второстепенную роль. В целом механизм охлаждения почти всех областей М. г. подобен охлаждению зон НII, но в областях HI повышенную роль в охлаждении играет излучение в ИК-диапазоне, а в холодных молекулярных областях — в радиодиапазоне.
Ионизуется М. г. теми же видами излучений, что и нагревается. Ионизац. равновесие достигается при равенстве скорости ионизации и скорости гл. обр. радиац. рекомбинации. В отдельных случаях, напр. для иона ОН в областях HI, определённую роль играют реакции обмена зарядом (реакции перезарядки) с водородом и реже с гелием.
Формирование структуры М. г.
Анализ, проведённый С.Б. Пикельнером (1967 г.), показал, что ур-ние состояния газа в областях HI подобно ур-нию состояния Ван-дер-Ваальса для неидеального газа, т.е. давление p имеет минимум и максимум (рис. 4). В областях HI спиральных ветвей Галактики определённому давлению М. г. могут соответствовать три значения концентрации частиц (или плотности) газа n. Состояние при среднем значении концентрации неустойчиво, из этого состояния М. г. за ~ 106 лет перейдёт в состояние с большей (n1) или меньшей (n2) концентрацией. В результате М. г. разбивается на области с $n_1\approx$10 см-3 и $n_2\approx 0,1$ см-3, между к-рыми устанавливается равенство давлений: сгущения с $n_1\approx$10 см-3 и $T_1\approx 100$K (облака) находятся в динамич. равновесии с областями, где $n_2\approx 0,1$ см-3 при темп-ре $T_2\approx 10000$ К (см. кривую T на рис. 4). Процесс расслоения М. г. на две термически устойчивые фазы (как следствие тепловой неустойчивости М. г.) приводит к тому, что в областях НI существуют «холодные» облака и более «горячая» межоблачная среда.
Другим, ещё более сильным фактором, влияющим на структуру М. г. в S-галактиках, явл. спиральные ударные волны. Они возникают при соударении М. г., уже накопленного в спиральных ветвях, с газом, к-рый при круговом движении вокруг центра галактики догоняет спиральные ветви и входит в них со сверхзвуковой скоростью (спиральные ветви вращаются вокруг центра Галактики в ту же сторону, что газ и звезды, но с меньшей скоростью). На фронте ударной волны набегающий газ тормозится и уплотняется. За счет повысившегося давления почти весь газ оказывается в плотной фазе. Так образуются газово-пылевые комплексы, наблюдаемые на внутр. сторонах спиральных ветвей.
Газово-пылевые комплексы могут возникать не только под действием спиральных ударных волн, но и вследствие т.н. Рэлея-Тейлора неустойчивости газового диска галактик. В результате развития неустойчивости возникают компактные ($\approx$10-30 пк) газово-пылевые сгустки, становящиеся затем очагами образования звёздных скоплений. В S-галактиках неустойчивость Рэлея-Тейлора играет, вероятно, меньшую роль, чем спиральные ударные волны, но в Ir-галактиках она, видимо, явл. осн. причиной образования комплексов М. г.
Наблюдения показывают, что межзвёздные облака имеют помимо упорядоченного движения вокруг центра Галактики хаотич. скорости со ср. значением ок. 10 км/с. В среднем через 30-100 млн. лет облако сталкивается с др. облаком, что приводит к диссипации (уменьшению) этих случайных движений, частичному слипанию облаков и формированию степенного (~ ${\mathfrak M}^{-3/2}$) спектра их масс. Хаотич. движения поддерживаются взрывами сверхновых: сброшенная при взрыве М. г. оболочка звезды тормозится в М. г. и передает облакам часть своего импульса.
Из области М. г., по к-рой прошла ударная волна, вызванная вспышкой, почти весь газ оказывается выметенным. Возникшая область разреженного газа (каверна размером в десятки пк с n~ 10-2 см-3 и T ~ 106 K) может существовать ~107 лет. Если за это время поблизости вспыхнет ещё одна сверхцо-вая, то новая каверна, сомкнувшись с предыдущей, может образовать обширныи коридор горячего разреженного сильно ионизованного газа. Излучение горячего газа может нагревать до 300-5000 К газовые облака, находящиеся на расстоянии многих пк от коридоров (существование облаков с такой темп-рой невозможно в описанной выше простой двухфазной модели М. г.).
Вспышки сверхновых звёзд, «пробурившие» газовый диск галактики насквозь, вызывают отток газа от плоскости галактики в межгалактич. среду и нагрев его там вплоть до 107-108 K. В результате в межгалактич. среду попадает обогащённый тяжёлыми элементами газ. Возможно, что именно благодаря этим процессам межгалактич. газ в скоплениях галактик имеет почти такое же содержание железа, как атмосфера Солнца. Часть газа, видимо, падает назад к галактич. плоскости в виде высокоширотных и высокоскоростных облаков водорода.
Интересные факты
Галактический газовый диск изогнут на периферии.
Основной объем межзвездного газа сосредоточен в спиральных рукавах, один из коридоров которых расположен рядом с Солнечной системой.
В разреженном МГ, подвергаемом действию космических излучений, обнаружена зависимость показателей температуры, давления и объема электронов от плотности концентрации водорода.
К самым мощным факторам, влияющим на структурные процессы в межзвездной газовой среде, относятся спиральные ударные волны.
Энергия вспышки сверхновой способна пробить пространство галактического диска, вызвав тем самым отток МГ в свободное пространство Вселенной.
В теории молекулярные газовые облака за период в чуть более 100 лет должны превращаться в звезды. Но на практике существует множество факторов, замедляющих этот процесс.