Происхождение туманностей

Смотрящие из глубин космоса загадочные объекты давным-давно привлекали интерес людей, наблюдающих за небом. Еще древнегреческий ученый Гиппарх в своем каталоге отметил наличие в ночном небе нескольких туманных объектов. Его коллега Птолемей пополнил список еще пятью туманностями. В XVII веке Галилей изобрел телескоп и с его помощью смог увидеть туманности Ориона и Андромеды. С тех пор по мере совершенствования телескопов и других приборов начались новые открытия в космическом пространстве. А туманности отнесли к отдельному классу звездных объектов.

Туманность — участок межзвёздной среды, выделяющийся своим излучением или поглощением излучения на общем фоне неба. Они состоят из пыли, газа и плазмы.

Когда физическая природа звезд и туманностей была еще не известна, то предполагали, что туманности, газовые и пылевые, — это остатки того вещества, из которого когда-то образовались звезды. Туманности, наблюдаемые нами сейчас, наоборот, сами являются продуктом деятельности звезд и результатом грандиозных катастроф.

Первоначальный принцип, по которому квалифицируют туманности, заключается в поглощении или рассеивании (излучении) ими света. Данный критерий делит туманности на светлые и темные. Излучение светлых зависит от их происхождения. А источники энергии, которые возбуждают их излучение, зависят от собственной природы. Очень часто в туманности могут действовать не один, а два механизма излучения. Темные можно увидеть только благодаря поглощению расположенных за ними источников излучения.

Так же, среди видов туманностей выделяют планетарные туманности и сверхновые, а также туманности, ионизованные излучением и другие. Выделение различных типов туманностей в значительной степени связано с особенностями их происхождения.

Происхождение различных типов туманностей

Тёмные туманности

Тёмные туманности представляют собой плотные (обычно молекулярные) облака межзвёздного газа и межзвёздной пыли, непрозрачные из-за межзвёздного поглощения света пылью. Обычно они видны на фоне светлых туманностей. Реже тёмные туманности видны прямо на фоне Млечного Пути.

Таковы туманность Угольный Мешок и множество более мелких, называемых гигантскими глобулами.

В тех частях туманностей, которые полупрозрачны в оптическом диапазоне, хорошо заметна волокнистая структура. Волокна и общая вытянутость туманностей связаны с наличием в них магнитных полей, затрудняющих движение вещества поперёк силовых линий и приводящих к развитию ряда видов магнитогидродинамических неустойчивостей. Пылевой компонент вещества туманностей связан с магнитными полями из-за того, что пылинки электрически заряжены.

Отражательные туманности

Отражательные туманности являются газово-пылевыми облаками, подсвечиваемыми звёздами. Если звезда (звёзды) находятся в межзвёздном облаке или рядом с ним, но недостаточно горяча (горячи), чтобы ионизовать вокруг себя значительное количество межзвёздного водорода, то основным источником оптического излучения туманности оказывается свет звёзд, рассеиваемый межзвёздной пылью.

Примером таких туманностей являются туманности вокруг ярких звёзд в скоплении Плеяды.

Большинство отражательных туманностей расположено вблизи плоскости Млечного Пути. В ряде случаев наблюдаются отражательные туманности на высоких галактических широтах. Это газово-пылевые (часто молекулярные) облака различных размеров, формы, плотности и массы, подсвечиваемые совокупным излучением звёзд диска Млечного Пути.

Редкой разновидностью отражательной туманности является так называемое световое эхо, наблюдавшееся после вспышки новой звезды 1901 года в созвездии Персея. Яркая вспышка новой звезды подсветила пыль, и несколько лет наблюдалась слабая туманность, распространявшаяся во все стороны со скоростью света. Кроме светового эха, после вспышек новых звёзд образуются газовые туманности, подобные остаткам вспышек сверхновых звёзд.

Диффузные туманности

Диффузные туманности всегда находятся в областях звездообразования – как правило, в спиральных рукавах галактик. Обычно они связаны с крупными и холодными газопылевыми облаками, в которых формируются звезды. Яркая диффузная туманность – это небольшой кусочек такого облака, разогретый родившейся поблизости горячей массивной звездой.

Поскольку такие звезды формируются нечасто, диффузные туманности далеко не всегда сопровождают холодные облака. Например, в Орионе есть такие звезды, поэтому есть несколько диффузных туманностей, но они крошечные по сравнению с невидимым для глаза темным облаком, занимающим почти все созвездие Ориона. В небольшой области звездообразования в Тельце нет ярких горячих звезд, и поэтому нет заметных диффузных туманностей (есть лишь несколько слабых туманностей вблизи активных молодых звезд типа Т Тельца).

Планетарные туманности

Планетарные туманности – это оболочки, сброшенные звездами на заключительном этапе их эволюции. Нормальная звезда светит за счет протекающих в ее ядре термоядерных реакций, превращающих водород в гелий. Но когда запасы водорода в ядре звезды истощаются, с ней происходят быстрые перемены: гелиевое ядро сжимается, оболочка расширяется, и звезда превращается в красный гигант.

Обычно это переменные звезды типа Миры Кита или OH/IR с огромными пульсирующими оболочками.

В конце концов они сбрасывают внешние части своих оболочек. Лишенная оболочки внутренняя часть звезды имеет очень высокую температуру, иногда выше 100 000° C. Она постепенно сжимается и превращается в белый карлик, лишенный ядерного источника энергии и медленно остывающий. Таким образом, планетарные туманности выбрасываются их центральными звездами, тогда как диффузные туманности типа Туманности Ориона – это вещество, которое осталось неиспользованным в процессе формирования звезд.

Виды и происхождение туманностей, созданных ударными волнами

Разнообразие и многочисленность источников сверхзвукового движения вещества в межзвёздной среде приводят к большому количеству и разнообразию туманностей, созданных ударными волнами. Обычно такие туманности недолговечны.Они исчезают тогда, когда исчезает кинетическая энергия движущегося газа.

Существует несколько источников для возникновения таких ударных волн. Чаще всего – это результат взрыва звезды. Реже – звездный ветер, вспышки новых и сверхновых звезд. В любом случае присутствует один источник выброса подобного вещества – звезда Туманности такого происхождения имеют форму расширяющейся оболочки или форму сферы.

Вещество, которое выбросилось в результате взрыва, может иметь различные скорости от сотен до тысяч км/с, из-за этого температура газа за ударной волной достигает не миллионов, а миллиардов градусов.

Остатки сверхновых и новых звёзд

Наиболее яркие туманности, созданные ударными волнами, вызваны взрывами сверхновых звёзд и называются остатками вспышек сверхновых звёзд. Они играют очень важную роль в формировании структуры межзвёздного газа. Наряду с описанными особенностями для них характерно нетепловое радиоизлучение со степенным спектром, вызванное релятивистскими электронами, ускоряемыми как в процессе взрыва сверхновой, так и позже пульсаром, обычно остающимся после взрыва. Туманности, связанные со взрывами новых звёзд, малы, слабы и недолговечны.

Существует два возможных сценария рождения сверхновой звезды:

  • Массивная звезда, исчерпав своё топливо, прекращает производство термоядерной энергии, что влечёт коллапс звезды под действием силы собственной гравитации и её превращение в нейтронную звезду или чёрную дыру.
  • Белый карлик, накапливая вещество звезды-компаньона (явление аккреции), достигает критической массы и становится сверхновой в термоядерной вспышке.

В обоих случаях взрыв сверхновой выбрасывает в окружающее пространство всё или почти всё вещество из внешних слоёв звезды, со скоростью около 1 % от скорости света, что соответствует порядка 3000 км/с. Когда выброшенное вещество сталкивается с околозвёздным или межзвёздным газом, формируется ударная волна, превращающая газ в горячую плазму, разогревая его до температуры порядка 10 миллионов кельвинов.

Вероятно самый красивый и лучше всего исследованный молодой остаток образован сверхновой SN 1987A в Большом Магеллановом Облаке, вспыхнувшей в 1987 г. Другие хорошо известные остатки сверхновых, это Крабовидная туманность, остаток относительно недавнего взрыва (1054 год), остаток сверхновой Тихо (SN 1572), получившей имя в честь Тихо Браге, который наблюдал и зафиксировал её первоначальную яркость сразу после вспышки в 1572 г., а также остаток сверхновой Кеплера (SN 1604), названной в честь Иоганна Кеплера.

Туманности вокруг звёзд Вольфа — Райе

Другой тип туманностей, созданных ударными волнами связан со звёздным ветром от звёзд Вольфа — Райе. Эти звёзды характеризуются очень мощным звёздным ветром с потоком массы  и скоростью истечения 1⋅103—3⋅103 км/с. Звезды Вольфа имеют довольно мощный ветровой поток массы и скорость истечения. Они образуют туманности средних размеров с очень яркими волокнами.

В отличие от остатков вспышек сверхновых звёзд, радиоизлучение этих туманностей имеет тепловую природу.

Время жизни таких туманностей ограничено продолжительностью пребывания звёзд в стадии звезды Вольфа — Райе и близко к 105 лет.

Туманности вокруг O-звёзд

Аналогичны по свойствам туманностям вокруг звёзд Вольфа — Райе, но образуются вокруг наиболее ярких горячих звёзд спектрального класса О — Of, обладающих сильным звёздным ветром. В отличие от туманностей, расположенных вокруг звезд Вольфа – Райе, туманности О-звезд менее яркие, но имеют намного большие размеры и продолжительность существования.
Туманности в областях звездообразования

Ударные волны меньших скоростей возникают в областях межзвёздной среды, в которых происходит звездообразование. Они приводят к нагреву газа до сотен и тысяч градусов, возбуждению молекулярных уровней, частичному разрушению молекул, нагреву пыли. Такие ударные волны видны в виде вытянутых туманностей светящихся преимущественно в инфракрасном диапазоне.

Ряд таких туманностей обнаружен, например, в очаге звездообразования, связанном с туманностью Ориона.

Таким образом, во вселенной, хотя и в разное время и в разных местах, происходит как процесс сгущения звезд из туманностей, так и, наоборот, образование новых туманностей за счет звезд. Это круговорот вселенной, вечное зарождение одних миров и гибель других.

Видео



Источники