Поиск жизни в Солнечной системе

Существует ли жизнь на других планетах Солнечной системы или Земля такая одна? Этот вопрос всегда интересовал человечество. С развитием науки и расширения знаний о Космосе появились новые возможности изучать Солнечную систему, и в том числи — поиска жизни в ее пределах.

Исследование автоматическими межпланетными станциями других планет и их спутников в Солнечной системе дало много важной информации об этих телах и позволило детально сравнивать их с Землёй.

Изучением Вселенной, её происхождения и эволюции занимаются астрономы и физики. Исследованием живых существ и разума заняты биологи и психологи. А происхождение жизни волнует всех: астрономов, физиков, биологов, химиков.

К сожалению нам знакома только одна форма жизни — белковая и только одно место во Вселенной, где эта жизнь существует, — планета Земля. А уникальные явления, как известно, с трудом поддаются научному исследованию.

Вот если бы удалось обнаружить другие населённые планеты, тогда загадка жизни была бы решена гораздо быстрее. А если бы на этих планетах нашлись бы разумные существа… Дух захватывает, стоит только представить себе первый диалог с братьями по разуму.

Но каковы реальные перспективы такой встречи? Где в космосе можно найти подходящие для жизни места? Может ли жизнь зародиться в межзвёздном пространстве, или для этого необходима поверхность планет?

Поиск живых организмов в Солнечной системе

К сожалению, нам знакома только одна форма жизни — белковая — и только одно место во Вселенной, где эта жизнь существует, — планета Земля. Так как уникальные явления с трудом поддаются научному исследованию, поэтому так важно обнаружить другие населённые планеты.

Луна

Луна — единственное небесное тело, где смогли побывать земляне, и грунт которого подробно исследован в лаборатории. Никаких следов органической жизни на Луне не найдено.

Дело в том, что Луна не имеет, и никогда не имела атмосферы: её слабое поле тяготения не может удерживать газ вблизи поверхности. По этой же причине на Луне нет океанов — они бы испарились. Не прикрытая атмосферой поверхность Луны днём нагревается до 130 °С, а ночью остывает до –170 °С. К тому же на лунную поверхность беспрепятственно проникают губительные для жизни ультрафиолетовые и рентгеновские лучи Солнца, от которых Землю защищает атмосфера. В общем, на поверхности Луны для жизни условий нет. Правда, под верхним слоем грунта, уже на глубине 1 м, колебания температуры почти не ощущаются: там постоянно около –40 °С. Но всё равно в таких условиях жизнь, вероятно, не может зародиться.

Меркурий

На ближайшей к Солнцу маленькой планете Меркурий ещё не побывали ни космонавты, ни автоматические станции. Но люди кое-что знают о ней благодаря исследованиям с Земли и с пролетавшего вблизи американского аппарата «Маринер-10» (1974 и 1975 гг. ). Он сообщил, что условия там ещё хуже, чем на Луне. Атмосферы нет, а температура поверхности меняется от -170 до +4500С. Под грунтом температура в среднем составляет около 80 0С, причём с глубиной она, естественно, возрастает.

Венера

Венеру в недавнем прошлом астрономы считали почти точной копией молодой Земли. Строились догадки, что скрывается под её облачным слоем: тёплые океаны, папоротники, динозавры? Увы, из-за близости к Солнцу Венера совсем не похожа на Землю: давление атмосферы у поверхности этой планеты в 90 раз больше земного, а температура и днём, и ночью около 460 °С.

Хотя на Венеру опустилось несколько автоматических зондов, поиском жизни они не занимались. Над поверхностью Венеры на высоте 55 км давление и температура такие же, как на Земле. Но атмосфера состоит из углекислого газа, к тому же в ней плавают облака из серной кислоты.

Марс

Марс не без оснований считался пригодной для жизни планетой. Хотя климат там очень суровый (летним днём температура составляет около 0 °С, ночью –80 °С, а зимой доходит до –120 °С) , но всё же это не безнадёжно плохо для жизни: существует же она в Антарктиде и на вершинах Гималаев.

Однако на Марсе есть ещё одна проблема — крайне разряжённая атмосфера, в 100 раз менее плотная, чем на Земле. Она не спасает поверхность Марса от губительных ультрафиолетовых лучей Солнца и не позволяет воде находиться в жидком состоянии. На Марсе вода может существовать только в виде пара и льда. И она действительно там есть, во всяком случае в полярных шапках планеты. Поэтому с большим нетерпением все ждали результатов поисков марсианской жизни, предпринятых сразу же после первой удачной посадки на Марс в 1976 г. автоматических станций “Викинг–1 и –2” .

Но они всех разочаровали: жизнь не была обнаружена. Правда это был лишь первый эксперимент. Поиски продолжаются.

Планеты гиганты

Климат Юпитера, Сатурна, Урана и Нептуна совершенно не соответствует нашим представлениям о комфорте: очень холодно, ужасный газовый состав (метан, аммиак, водород и т.д.) , практически нет твёрдой поверхности — лишь плотная атмосфера и океан жидких газов. Всё это очень непохоже на Землю. Однако в эпоху зарождения жизни и Земля была совсем не такой, как сейчас. Её атмосфера скорее напоминала венерианскую и юпитерианскую, разве что была теплее. Поэтому в ближайшее время непременно будет осуществлён поиск органических соединений в атмосфере планет-гигантов.

Спутники

“Семейство” спутников, астероидов и ядер комет очень разнообразно по своему составу.

В него, с одной стороны, входит огромный спутник Сатурна Титан с плотной азотной атмосферой, а с другой — мелкие ледяные глыбы кометных ядер, большую часть времени проводящие на далёкой периферии Солнечной системы. Серьёзной надежды обнаружить жизнь на этих телах не было никогда, хотя исследование на них органических соединений как предшественников жизни представляет особый интерес.

В последнее время внимание экзобиологов (специалистов по внеземной жизни) привлекает спутник Юпитера Европа. Под ледяной корой этого спутника должен быть океан жидкой воды. А где вода — там жизнь. Более подробно каждый спутник рассмотрим ниже.

Планеты и их спутники Солнечной системы

Итак, пока в Солнечной системе нигде кроме Земли, жизнь не обнаружена. 

На самом деле мы точно не знаем: может быть, жизнь есть не только на Земле. Просто обитателей окрестного космоса пока не видно и не слышно. Жителям Земли невероятно повезло оказаться в довольно спокойном участке Галактики, рядом с очень стабильной звездой и на планете с круговой орбитой, идеально расположенной в «зоне жизни». Видимо, жизненным формам в ближайших к Земле областях космоса повезло меньше.

Вероятность существования живых организмов в Солнечной системе

Еще пару веков назад существование различных форм жизни на других планетах и спутниках Солнечной системы считалось вполне правдоподобным.

До изобретения в 20 веке мощных телескопов и космических аппаратов считалось, что на Марсе есть разумные организмы, а под плотными облаками Венеры прячется тропический лес. Естественно, эти предположения были ошибочны, что неоднократно подтвердилось путем исследования космического пространства с помощью зондов и орбитальных обсерваторий.

Жизнепригодность — пригодность небесного тела для возникновения и поддержания жизни.

Сейчас жизнь известна только на Земле и ни одно небесное тело нельзя уверенно признать пригодным для жизни, — можно только оценивать степень этой пригодности на основе степени сходства условий на нём с земными.

Условия возникновения жизни

Предпосылки к возникновению жизни возможны на некоторых объектах нашей звездной системы. Потенциально пригодными для существования жизни планетами и малыми телами считаются те, что обладают некоторыми свойствами:

  • наличие воды в жидком состоянии;
  • близкая к земной масса;
  • близость к центральной звезде или горячему газовому гиганту;
  •  наличие в составе металлов, углерода, кислорода, солей кремния, азота, серы и водорода;
  • малый эксцентриситет орбиты;
  • угол наклона оси вращения к плоскости орбиты схожий с земных (мягкая смена пор года);
  • быстрая смена дня и ночи.

С другой стороны космическое тело, непригодное для жизни одного типа, может быть вполне пригодно для жизни другого типа.  Таким образом, особый интерес для поиска жизни, подобной земной, представляют планеты и спутники планет с условиями, подобными земным.

Если есть жидкая вода, значить есть жизнь, да?

Вода — необходимый элемент известной нам формы жизни. Это растворитель и удобная среда для протекания химических реакций. Теоретически, для жизни сгодилась бы и другая жидкость. Например, на спутнике Сатурна Титане идут метановые дожди и текут метановые реки. Но между газообразным и замерзшим метаном (оба этих состояния не подходят для жизни) всего 20° разницы, а у воды этот диапазон составляет 100°.

Теория «вода значит жизнь», которую когда-то применяли к Марсу, устарела. Мы можем судить об этом хотя бы по тому, что в космосе нашли уже довольно много воды, а жизни пока не обнаружили.

Опыты по зарождению жизни на планетах

В конце 50-х гг. ХХ столетия американские биофизики Стэнли Миллер, Хуан Оро, Лесли Оргел в лабораторных условиях имитировали первичную атмосферу планет (водород, метан, аммиак, сероводород, вода). Колбы с газовой смесью они освещали ультрафиолетовыми лучами и возбуждали искровыми разрядами (на молодых планетах активная вулканическая деятельность должна сопровождаться сильными грозами).

В результате из простейших веществ сформировались 12 из 20 аминокислот, образующих все белки земных организмов, и 4 из 5 оснований, образующих молекулы РНК и ДНК.

Области возможного существования жизни в Солнечной системе

 Жизнь на Марсе

Если говорить о планетах Солнечной системы, то наиболее вероятным кандидатом на наличие жизни является наш сосед, Марс. Об обитаемости его не писал только ленивый. Но данные десятка миссий говорят о том, что это сухая, безжизненная пустыня и населена роботами (пара марсоходов).

Около 3.5 млрд. лет назад у Марса были океаны жидкой воды и атмосфера. Но планета меньше нашей, ядро остыло, генерация магнитного поля прекратилась, и атмосфера сдулась солнечным ветром. Вода без защиты атмосферы испарилась, оставив после себя отложения гипса и залежи льда в глубине почвы. А нам остается любоваться только каналами, которые образовались под влиянием воды.

Условия здесь ненамного суровее, чем в северных широтах на Земле.

Слабая атмосфера планеты едва способна защищать поверхность от губительной солнечной радиации, но микробы вполне могут существовать под поверхностью почвы.

Но есть и хорошие новости. На Марсе обнаружили следы метана. Данные сразу нескольких зондов говорят о периодическом присутствии этого газа. Метан очень быстро разлагается, значит должен быть источник, который постоянно пополняет атмосферу. На Земле почти весь метан биогенного происхождения. А на Марсе…неизвестно. Возможно какие-то залежи под поверхностью, хотя вулканизма и тектоники на планете нет уже давно, а на Земле это основной небиогенный поставщик этого газа. За эту соломинку хватаются оптимисты, но одного признака мало, нужны железные доказательства наличия жизни.

Поэтому поиск жизни на Марсе — это скорее не поиск ее в настоящем времени, что крайне маловероятно, а поиск следов в прошлом.

Жизнь на Европе (Спутник Юпитера)

Европа – шестой спутник Юпитера, у неё имеется вулканическая активность (точнее криовулканическая), и, во всяком случае гипотетически – вода. Много воды!

Этот небольшой ледяной мир, чуть меньше нашей Луны — первый кандидат на поиски внеземной жизни в Солнечной системе. Условия, которые есть на этом спутнике легко заткнут за пояс Марс.

Но начнем сначала с минусов:

  • Европа находится в радиационном поясе Юпитера, а он очень большой, и радиация на поверхности спутника огромна.
  • Солнечного света на Европе всего несколько процентов от того, что получаем мы.

Собственно, перейдем к плюсам:

  • Спутник покрыт слоем льда, под которым плещется соленый океан.
  • Лед по разным оценкам имеет толщину от 4 до 100 км в зависимости от места, а глубина океана может достигать 100 и более километров. Поэтому жидкой воды на Европе больше, чем у нас.

Зонд Галилео много лет изучал систему Юпитера и наличие подледного океана фактически доказано. Тем более снимки Хаббла показывают признаки выбросов водяного пара. Внутренняя вулканическая активность, сжатия и растяжения под силой гравитации Юпитера и т.п., могли достаточно разогреть этот океан и снабдить его химическими элементами необходимыми для развития живых организмов.

Если бактерии прекрасно чувствуют себя у геотермальных источников на глубине земного океана, почему бы им не обитать и у гидротермальных источников на Европе?

На данный момент запланированы 2 миссии по исследованию спутника. Это миссии НАСА и EKA. НАСА отправит орбитер с радиолокатором и возможно посадочный модуль. А ЕКА (Европейское космическое агенство) исследуют Европу с пролетной траектории когда будут лететь к Ганимеду.

Жизнь на Энцеладе (спутник Сатурна)

Энцелад – шестой по размеру спутник Сатурна. Он считается вероятным кандидатом на наличие жизни, благодаря (теоретически) достаточно благоприятным температурным условиям, возможным присутствием воды и органики.

Он очень маленький, всего ~500 км в диаметре, океан жидкой воды у него небольшой.

Недра спутника также, как и у Европы разогреты приливным взаимодействием с планетой. Но Энцелад выгодно (для наших исследований) отличается от Европы тем, что струи воды бьют с поверхности фонтанами и даже успели сформировать разреженное кольцо Сатурна Е.

Поверхность спутника на 99% покрыта водяным льдом и есть весьма не слабые шансы на то, что под ним находится вода в жидком состоянии.

Исследования Энцелада с помощью автоматической межпланетной станции Кассини (Cassini), пролетавшей мимо Энцелада в 2005-м, указывают на присутствие в его атмосфере водорода, углерода, азота и кислорода — атомов необходимых для развития жизни.

Жизнь на Титане (спутник Сатурна)

Титан – самый большой из спутников Сатурна. У него атмосфера толщиной ~400 км, состоящая из азота и углеводородов, которую защищает от солнечного ветра магнитное поле Сатурна. На поверхности Титана температура -180 С, но есть сотни озер и множество морей и рек.

Хотя на Титане очень холодно, здесь существуют достаточные условия для начала того, что называется химической эволюцией.

Он интересен тем, что на его поверхности есть полный гидрологический цикл, как на Земле, только вместо воды на Титане метан и этан. Спутник Титан больше по размерам чем планета Меркурий, но меньше по массе почти в 2 раза.

Плотная атмосфера из азота и наличие органических соединений является интересным объектом для исследования экзобиологами, так как похожие условия могли существовать на молодой Земле.

На спутник в 2005 году зонд Кассини доставил спускаемый аппарат Гюйгенс. Он нам передал снимки поверхности и данные о составе и атмосфере. Титан примечателен тем, что это целая лаборатория по изучению возможной жизни не на основе растворителя воды и белков.

Возможна эта жизнь существует, но она совершенно непохожа на то, что мы привыкли себе представлять. Скорее всего это будет нечто действительно инопланетное – способное существовать при температурах далеко за -200 С°, для которой роль привычной нам воды выполняет жидкий метан.

Жизнь на Ио (спутник Юпитера)

Наконец, Ио, — одно из немногих небесных тел Солнечной системы, на котором все ещё идет активная вулканическая активность.

Несмотря на тонкую атмосферу, в ней присутствуют довольно сложные химические соединения, а отрицательная температура у поверхности, в местах выхода лавы на поверхность, в пробиваемых потоками “лавовыми трубах” под поверхностью, теоретически может быть вполне терпимой для существования простейших форм жизни.

Самое геологически активное тело в Солнечной системе – Ио хранит много загадок. Жизнь здесь может возникнуть не «потому что», а «вопреки».

Учитывая наличие сложных соединений как результата вулканической деятельности, а также колоссальную дозу радиации, которую обрушивает на Ио его “хозяин” – Юпитер, здесь действительно довольно активно идут химические процессы, одним из побочных результатов которых может быть появление жизни, пусть даже и совершенно выходящей за рамки нашего представления о живых существах.

Метеориты, как доказательство жизни в Космосе.

В упавших на землю метеоритах иногда обнаруживают сложные органические молекулы. Сначала было подозрение, что они попадают в метеориты из земной почвы, но теперь их внеземное происхождение вполне надёжно доказано.

Например, упавший в Австралии в 1972 г. метеорит Мерчисон был подобран уже на следующее утро. В его веществе нашли 16 аминокислот — основных строительных блоков животных и растительных белков, причём лишь 5 из них присутствуют в земных организмах, а остальные 11 на Земле редки. К тому же среди аминокислот метеорита Мерчисон в равных долях присутствуют левые и правые молекулы (зеркально симметричные друг другу) , тогда как в земных организмах — в основном левые. Кроме того в молекулах метеорита изотопы углерода 12С и 13С представлены в иной пропорции, чем на Земле.

Это, бесспорно, доказывает, что аминокислоты, а также гуанин и аденин — составные части молекул ДНК и РНК, могут самостоятельно формироваться в космосе.

Когда ожидать интересных открытий?

Работающие сегодня в космосе исследовательские аппараты могут определять воду и органические соединения, но точности для поиска биомаркеров не хватает. Единственный аппарат нового поколения, цель которого — поиск биологической активности за пределами Земли, это марсианский спутник Trace Gas Orbiter.

Он несет российские и европейские приборы для определения с высокой точностью распределения газов в атмосфере Марса. Аппарат должен определить места на поверхности, откуда выделяется метан. Возможно, в одно из таких мест в 2020 году отправится европейский марсоход ExoMars на российской посадочной платформе. Марсоход оборудован двухметровым буром и прибором способным определять хиральность органических соединений.

В середине 20-х годов к ледяному спутнику Юпитера Европе отправится космический аппарат NASA Europa Clipper, который попробует собрать частички воды, вылетающей из подледного океана через трещины.

Что будет, если найдут внеземную жизнь?

На Земле не изменится практически ничего. Какие-то ученые получат квартальные премии, а некоторые научные группы получат повышенное финансирование для продолжения исследований.

Следующий этап после обнаружения внеземной жизни в Солнечной системе — определить, что это не земная жизнь, добравшаяся своим собственным путем через миллионы километров безвоздушного пространства. Теоретически такое возможно и без космонавтики. Например на Земле находят метеориты прилетевшие с Марса, почему бы на Марсе не найти земные метеориты с микропассажирами? Наверное, следующее поколение экзобиологических космических аппаратов полетит туда с устройствами, которые позволят «прочесть» их ДНК.

Так или иначе ученые усиленно занимаются поисками жизни в Космосе, а с развитием науки и технологий — шансы их постоянно возрастают.

 

Видео



Источники